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3D Shape Perception

Objects out there are 3D and the percepts are 3D. 
But the retinal image is 2D. 

How is the 3rd dimension recovered in the percept?



3D shape recovery
• Perceptual mechanisms required for 3D shape 

recovery are different from the mechanisms required 
for reconstructing color, size, or surfaces.

• This will not come as a surprise once one realizes that 
3D shapes are special. They are special because they 
are complex in the sense that the number of 
parameters needed to describe the shape of a 3D 
object is (theoretically) infinite (∞). 

• This contrasts markedly with the small number of 
parameters needed to describe color (3), size (1), or 
surface orientation (2).



• The fact that 3D shape is complex allows one to make 
use of very effective constraints for recovering 3D shape.

• Note that these shape constraints must be defined as 
shape invariants because if they are not, they will 
confound 3D shape with irrelevant aspects of the viewing 
conditions, e.g., viewing direction or illumination.

• Note that these shape constraints must also be effective in 
the sense that they allow one to tell different 3D shapes 
apart. They are not effective with ellipses or ellipsoids 
because these shapes are not complex. There are no 
effective shape invariants for these shapes.



• Now that you know the requirements for 
effective shape constraints, I will show you 
how our computational model, making use of 
such effective constraints, recovers the 3D 
shape of a sufficiently complex object from 
one of its 2D images. 

• The main shape constraint used by our model 
is 3D mirror symmetry. Symmetry is 
combined with 3 additional constraints, 
representing the likelihood function. 



3D mirror symmetry

3D mirror symmetry is an effective constraint because there are 
features of the 3D symmetric shape that are preserved (invariant) 
in any of its 2D images. The invariant feature shown in this figure 
is the parallelism of the line segments connecting pairs of points 
symmetric in 3D.



How 3D mirror symmetry helps 3D 
shape recovery

3D mirror symmetry greatly reduces the family 
of possible 3D interpretations. It does this 
because a single 2D image of a mirror symmetric 
shape is equivalent to two 2D images of an 
arbitrary shape. Vetter & Poggio (1994) showed 
how this works.



Vetter & Poggio’s (1994) Method

• The recovery of a 3D mirror-symmetric shape 
from a single 2D orthographic image is equivalent 
to the recovery of an arbitrary 3D shape from two
2D images.

• The second image (called the “virtual image”) is 
produced from the given 2D image, simply by 2D 
mirror reflection.

• Recall that two 2D images determine a 3D shape 
“out there” up to only one free parameter (Huang 
& Lee, 1989, Koenderink & van Doorn, 1991).



Real image

Vetter & Poggio’s (1994) Method



Real image Virtual image

3D reflection of a 3D symmetric shape can be undone by 
3D rigid rotation. Two 2D images determine the unknown 
3D symmetric shape with only one degree of freedom.

Vetter & Poggio’s (1994) Method



Real image Virtual image

The one-parameter family of possible 3D symmetric 
interpretations will be shown on the next slide. 

Vetter & Poggio’s (1994) Method



An illustration of a one-parameter family 
of 3D shapes recovered from the 2D 

image on the left

The shaded shapes are possible 3D symmetric 
interpretations of the line drawing. The 3D shapes 
differ with respect to an aspect ratio



Now that you have seen the power of 3D 
mirror symmetry, I will describe the 
additional constraints used in our 3D 
recovery model.



Additional constraints

• Maximal planarity of contours

• Minimum surface area (arg max V0/S3) 

• Maximal 3D compactness (arg max V2/S3)

Note that these three additional constraints 
represent the likelihood function: they minimize 
the sensitivity of the 2D image to the changes in 
the 3D viewing direction.



Additional constraints

• Maximal planarity of contours

• Minimum surface area (arg max V0/S3) 

• Maximal 3D compactness (arg max V2/S3)

They implement the likelihood for 1D features 
(contour), 2D features (surface) and 3D features 
(volume).



Now that you have some intuition about how 
the model works, let’s see a demo of what it 
can do, and how well it does it…

http://web.ics.purdue.edu/~li135/Demo.html



So far you have seen that the model recovers 
synthetic 3D objects very well, even when 
figure-ground organization is noisy.

Next, I will show how well it does with real 2D 
images of real 3D objects…

http://psyclops.psych.purdue.edu/~tsawada/demo/



You have seen that the model can recover 3D 
shapes quite well when the shapes are 
approximately symmetric. But some living 
symmetric shapes are only rarely geometrically 
symmetric as they go about their daily business. 
Humans, for example, are constantly changing the 
articulation of their arms, legs, heads and torsos. 
Can our model handle such asymmetric 
perturbations of a human’s 3D shape? 



The answer is “yes.” A small elaboration of our 
symmetry constraint did the trick…

Note, perturbations of symmetry only apply to 
the configuration of the body’s parts, not to the 
parts themselves. Today, we will show how the 
configuration of the body is recovered.



The 
configuration of 
this body’s 
parts is 
geometrically 
symmetric…



The 
configuration of 
this body’s 
parts is 
geometrically 
symmetric…



The 
configuration of 
this body’s 
parts is not
geometrically 
symmetric…



The 
configuration of 
this body’s 
parts is not
geometrically 
symmetric…



An asymmetric 
real body in real 
action



An asymmetric 
real body in real 
action



Summary
• Our model recovers the 3D shape of almost any 

symmetric or approximately symmetric object. 
• No depth cues or familiarity is required. 
• Surfaces come after, not before a 3D shape is 

recovered. Surfaces can be wrapped around 
shapes and texture can be added.

• Our model is robust, it tolerates substantial noise 
in the 2D image.

• It can recover the entire 3D shape, including its 
back, invisible part.



• We used 4 constraints (symmetry, planarity, minimum 
surface area and maximum 3D compactness) to recover 
all of the 3D shapes you have seen.

• Symmetry is special – it represents our a priori
knowledge about the natural environment – almost all 
natural objects in natural environments are symmetrical.

• The other 3 constraints can be thought of as representing 
the probabilistic nature of the viewing conditions, 
specifically, their likelihood, i.e., the recovered 3D shape 
should be such that the 2D image that was used for the 
recovery was not degenerate.

• THE BOTTOM LINE: only two constraints, symmetry
and likelihood are both necessary and sufficient to 
recover the 3D shape of an object from one of its 2D 
images.



Thank you!
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