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Motivation

*We seek an effective part-based representation for shape

oSkeletal and medial axis representations are appealing...

(apologies to Marr & Nishihara, 1978) “Geo.n-guy” (apologies to




...but problematic

Medial axis
computation often
gives
counterintuitive
results ( )

...and is very
sensitive to
on the contour

These problems ruin what would otherwise be an
isomorphism between axes and paris



A different approach

* Computing medial axis representations is
usually regarded as a “geometry problem”

* We view it as a probabilistic inference problem

* The goal is to estimate the shape’s
—the skeleton from which it “grew”.




Bayesian estimation of the shape skeleton

® Definea on skeletons p(skel)

® Define a generative model for shape given a skeleton,
which defines the p(shape|skel)

® Then we simply maximize the
b(skellshape) « p(skel)p(shape|skel)

® Equivalent to minimizing the description length
-log p(skellshape) « -log p(skel) + -log p(shape]|skel)
= DL(skel) + DL(shape given skel) in MDL-speak




Forward model / generative model / likelihood function

A skeleton...

...sprouts “ribs” in random directic
(centered on normal)

...0f random lengths

...whose endpoints join to
become the shape.




Inverse inference / estimation / posterior

Too simple... Too complex... Just right!

e Goal: Over all skeletons, find the one with
maximum posterior p(shape |skel)p(skel), called the
maximum a posteriori or

e This skeleton best “explains” the shape.



Defining p(:

The prior on skeletons

A hierarchical generalization of our prior on contours p(C):
A skeleton with n axes has prior p(skel) =

PaP(C1) - pap(C32) - - .. - Pap(Chr) = Py Hp
and complexity -log p(skel)
nlogp, + » logp(C;)

/)
Summed axial curve
Branching complexity complexity

_m

Increasing skeleton complexity / decreasing prior




Defining p(shape

Generative (likelihood) model for shapes

keleton axis _
Rib direction error density p(¢)

Rib length error density p(:
bape point x

A skeleton....
...sprouts ribs....
..with a certain pdf..

...whose endpoints join to form the shape.



Bayesian (posterior ratio) criterion for
the “significance” of an axis

Compare with the axis VS. without the axis
posteriors

b(skel+axis|shape)

If > |, keep the axis.
b(skel|shape)




Estimating the skeleton

the fine print

* |nitialize skeleton
(we use a conventional Voronoi-based medial axis)

* Prune “nonsignificant” axes using posterior ratio rule
* Parameterize skeleton estimate

(we use a piecewise cubic spline approximation)
* Begin gradient descent in skeleton parameter space

(we use a home-brewed variant of Expectation-
Maximization)
* Many other details I'm not mentioning




Results
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Robustness against contour noise

MAP Skeleton
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MAP skeleton

Estimated ribs




Camel, elephant




Donkey, fish

MAP skeleton




Skeletons and parts

* Distinct axes in the estimated skeleton “own”
(explain) points on the contour

* Many known principles of part decomposition
approximately “fall out” of MAP skeleton estimation
* minima rule (Hoffman & Richards, 1984)
* short cuts (Singh, Seyranian, & Hoffman, 1999)

* maximization of convexity (Rosin, 2000) Q_

* Unifies theory of part-boundaries with theory of
part-cuts



Extending “ownership” to interior regions

* For each interior point x, determine axial ownership by

p(z owned by A;) = p(A;)p(z|A;:)

1
AP depth(A;)

fld(z,
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4=.  Shape similarity

with Erica Briscoe

* Given shapes x and y, what is sim(x,y)?

* Conceptualization: shapes are similar to the degree that they see
to share common generative origins

* Operationalization: similarity is given by the “cross-likelihoods”

sim(x,y) ~ [p(shapex|skely) + p(shapey|skelx)]/2

* Experiments: Similarity ratings on all pairs of 25 shapes, various
types: “metric”’ differences, part-structure differences, non-axial
shapes...
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3D shape from the skeleton
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*The generative model can
be easily extended to 3D

*“Inflate” the shape to
produce a complete 3D
model from the 2D
skeleton




File Edit View Insert Tools Desktop

Load an image |
Create a shape |
Create a skeleton
Analyze this skeleton
Estmate skeleton

Animate shape

Reset consts

Open image...

Draw a new shape

Smooth Fractalze

Draw a new skeleton

Description length

MAP Skeleton | ‘ Fast MAP

Artculate + Articulate -

Window Help

Outline from image
Random axial shape | +axis
Random biob
Random animal
Medial axis
Prune

Ribs Prototype

Optimize cument skeleton

Figure 1: Shape tool




Statistics of natural shapes

* “Naturalizing the prior”

In place of the naive complexity prior, draw prior densities
from statistics of natural shapes

* The goal is to find “meaningful” shape parameters and tune the
representation to the environment




Sample domains: animals and leaves

with John Wilder

We gathered skeleton statistics from two shape databases...
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Empirical distributions of skeleton parameters
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Summary and conclusions

* Shape is poorly understood, even in the 2D case

- skeletons are important

* The as a unifying conceptualization of shape
Principled theoretical framework based on the idea of “explaining” the shape

Bayesian estimation of the MAP skeleton yields part decomposition, similarity measur
structure, etc.

* Many other extensions just beginning to be pursued




The end




