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Motivation
•We seek an effective part-based representation for shape

•Skeletal and medial axis representations are appealing…

(apologies to Marr & Nishihara, 1978) “Geon-guy” (apologies to
Biederman, 1987)



…but problematic
Medial axis
computation often
gives
counterintuitive
results (forking)

These problems ruin what would otherwise be an
isomorphism between axes and parts

...and is very
sensitive to noise
on the contour



A different approach

• Computing medial axis representations is
usually regarded as a “geometry problem”

• We view it as a probabilistic inference problem

• The goal is to estimate the shape’s generative
skeleton—the skeleton from which it “grew”.



Bayesian estimation of the shape skeleton

• Define a prior on skeletons p(skel)

• Define a generative model for shape given a skeleton,
which defines the likelihood p(shapeshape|skel)

• Then we simply maximize the posterior
      p(skel|shape)  ∝  p(skel)p(shape|skel)

• Equivalent to minimizing the description length
-log p(skel|shape)  ∝  -log p(skel) + -log p(shape|skel)
= DL(skel) + DL(shape given skel) in MDL-speak



A skeleton…

Forward model / generative model / likelihood function

…sprouts “ribs” in random directions
(centered on normal)

…of random lengths

…whose endpoints join to
become the shape.



Just right!Too complex…Too simple…

Inverse inference / estimation / posterior

• Goal: Over all skeletons, find the one with
maximum posterior p(shape|skel)p(skel), called the
maximum a posteriori or MAP skeleton             

• This skeleton best “explains” the shape.



A hierarchical generalization of our prior on contours p(C):
A skeleton with n axes has prior p(skel) =

The prior on skeletons

Increasing skeleton complexity / decreasing prior

Branching complexityBranching complexity
Summed axial curveSummed axial curve

complexitycomplexity

and complexity -log p(skel)

Defining p(skel)



Generative (likelihood) model for shapes

Skeleton axis

A skeleton....
Ribs

...sprouts ribs....

...whose endpoints join to form the shape.

Rib length error density p(!)
Rib direction error density p(")

Shape point x

Rib direction error "x

...with a certain pdf...

Defining p(shape|skel)



Bayesian (posterior ratio) criterion for
the “significance” of an axis

Compare
posteriors

with the axis without the axisvs.

p(skel+axis|shape)

p(skel|shape)
If > 1, keep the axis.



Estimating the skeleton
the fine print

• Initialize skeleton
 (we use a conventional Voronoi-based medial axis)

• Prune “nonsignificant” axes using posterior ratio rule
• Parameterize skeleton estimate

  (we use a piecewise cubic spline approximation)
• Begin gradient descent in skeleton parameter space

  (we use a home-brewed variant of Expectation-
Maximization)

• Many other details I’m not mentioning



a b c

Results



Robustness against contour noise

MAP Skeleton

Conventional MAT

“Dude7” + noise + noise on one
arm and leg



Dog, cow

MAP skeleton

Conventional MAT

Estimated ribs



Camel, elephant

MAP skeleton

Conventional MT



Donkey, fish
Donkey, fish

MAP skeleton

Conventional MT



Skeletons and parts

• Distinct axes in the estimated skeleton “own”
(explain) points on the contour

• Many known principles of part decomposition
approximately “fall out” of MAP skeleton estimation

• minima rule (Hoffman & Richards, 1984)
• short cuts (Singh, Seyranian, & Hoffman, 1999)
• maximization of convexity (Rosin, 2000)

• Unifies theory of part-boundaries with theory of
part-cuts



Extending “ownership” to interior regions

• For each interior point x, determine axial ownership by

x

x



Shape similarity
• Given shapes x and y, what is sim(x,y)?

• Conceptualization: shapes are similar to the degree that they seem
to share common generative origins

• Operationalization: similarity is given by the “cross-likelihoods”

      sim(x,y) ~ [p(shapex|skely) + p(shapey|skelx)]/2

• Experiments: Similarity ratings on all pairs of 25 shapes, various
types: “metric” differences, part-structure differences, non-axial
shapes…

with Erica Briscoe



Similarity results



3D shape from the skeleton
Rib

•The generative model can
be easily extended to 3D

•“Inflate” the shape to
produce a complete 3D
model from the 2D
skeleton





Statistics of natural shapes

• “Naturalizing the prior”

In place of the naïve complexity prior, draw prior densities
from statistics of natural shapes

• The goal is to find “meaningful” shape parameters and tune the
representation to the environment



Sample domains: animals and leaves

Animals

...

Leaves

...

with John Wilder

We gathered skeleton statistics from two shape databases…



Empirical distributions of skeleton parameters

Animals Leaves

Objectively quantifying “natural kinds”



Summary and conclusions

• Shape is poorly understood, even in the 2D case

- skeletons are important

• The generating skeleton as a unifying conceptualization of shape

Principled theoretical framework based on the idea of “explaining” the shape

Bayesian estimation of the MAP skeleton yields part decomposition, similarity measures, 3D
structure, etc.

• Many other extensions just beginning to be pursued



The end


